If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+16r+14=0
a = 2; b = 16; c = +14;
Δ = b2-4ac
Δ = 162-4·2·14
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-12}{2*2}=\frac{-28}{4} =-7 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+12}{2*2}=\frac{-4}{4} =-1 $
| 84=36+3t | | -4(v+1)=2(1-2)-6 | | 3(-4+5x)=-87 | | 0.10x+2000=2300 | | 3x-2+2x+30=180 | | 220.70=(32.50+3.30+5.90)x | | 2+(-3)(1)^2=x | | |4b-3|=2b+9 | | 90=-5(r-4)-5r | | 14-2x=147+5x | | 5=z+18/8 | | 2x+8=10x-18 | | 220.70=(50+3.30+5.90)x | | (2x+5)+x=80 | | (x+5)/2-(x+3)/6=1 | | -82=n+5(n-8) | | 9(x-2)=-54 | | -155=-5(1+6v) | | 4j-1=15 | | 253=176-v | | 6(x+5)-2(x+3)=1 | | 8s-10=3 | | 5=q+14/6 | | 7(7k-1)-6k=122 | | 7.5r=-10/3 | | 5/18n=3/5 | | 12=10+u/3 | | x+(x-9)=45 | | -u+194=63 | | x/2-7=19 | | 90=-6(v-7) | | -u+194=31 |